On sign-changing solutions for resonant (p,q)-Laplace equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EXISTENCE OF POSITIVE AND SIGN-CHANGING SOLUTIONS FOR p-LAPLACE EQUATIONS WITH POTENTIALS IN R

We study the perturbed equation −ε div(|∇u|p−2∇u) + V (x)|u|p−2u = h(x, u) + K(x)|u| −2u, x ∈ R u(x)→ 0 as |x| → ∞ . where 2 ≤ p < N , p∗ = pN N−p , p < q < p ∗. Under proper conditions on V (x) and h(x, u), we obtain the existence and multiplicity of solutions. We also study the existence of solutions which change sign.

متن کامل

Infinitely many solutions for a bi-nonlocal‎ ‎equation with sign-changing weight functions

In this paper, we investigate the existence of infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions. We use some natural constraints and the Ljusternik-Schnirelman critical point theory on C1-manifolds, to prove our main results.

متن کامل

A Note on Additional Properties of Sign Changing Solutions to Superlinear Elliptic Equations

We obtain upper bounds for the number of nodal domains of sign changing solutions of semilinear elliptic Dirichlet problems using suitable min-max descriptions. These are consequences of a generalization of Courant’s nodal domain theorem. The solutions need not to be isolated. We also obtain information on the Morse index of solutions and the location of suband supersolutions.

متن کامل

The analytical solutions for Volterra integro-differential equations within Local fractional operators by Yang-Laplace transform

In this paper, we apply the local fractional Laplace transform method (or Yang-Laplace transform) on Volterra integro-differential equations of the second kind within the local fractional integral operators to obtain the analytical approximate solutions. The iteration procedure is based on local fractional derivative operators. This approach provides us with a convenient way to find a solution ...

متن کامل

Sign-changing Multi-bump Solutions for Nonlinear Schrödinger Equations with Steep Potential Wells

We study the nonlinear Schrödinger equations: (Pλ) −∆u+(λa(x)+1)u = |u|p−1u, u ∈ H(R ), where p > 1 is a subcritical exponent, a(x) is a continuous function satisfying a(x) ≥ 0, 0 < lim inf |x|→∞ a(x) ≤ lim sup|x|→∞ a(x) < ∞ and a−1(0) consists of 2 connected bounded smooth components Ω1 and Ω2. We study the existence of solutions (uλ) of (Pλ) which converge to 0 in RN \ (Ω1 ∪Ω2) and to a presc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Differential Equations & Applications

سال: 2018

ISSN: 1847-120X

DOI: 10.7153/dea-2018-10-12